Samsung PM853T SSD Review

Samsung PM853T SSD Review

Here at Teknophiles, we don’t believe in a once-size-fits-all approach to selecting hard drives for our lab servers. We prefer to adhere to the rule of specificity, where drives have a defined purpose and drive selection is based on several criteria that suit that purpose. In no particular order, we evaluate capacity, cost, reliability, performance and form factor when selecting a drive for a particular role.

Looking at this list of attributes, it’s easy to reach the conclusion that simply selecting the fastest drive would be a no-brainer for all applications. But fast drives come at an expense – both literal expense, as well as capacity expense. And, frankly, there are times where you just don’t need the the capacity or even the raw performance that some drives offer. One example, as detailed in our Silicon Power S60 60GB SSD Review, are server OS drives. On nearly every server we build, any serious workload is going to be performed on a dedicated array or SAN LUN, where IOPS and throughput are known quantities that are appropriately sized. As such, dedicated operating system drives typically experience low I/O and are approximately 75-80% read operation. You just won’t see much benefit by spending extra cash on a blazing fast SSD for your OS. And when you further consider that we nearly always configure our OS drives in RAID-1, even relatively “slow” SSDs will yield perfectly usable read speeds for a typical operating system. Heck, reliability even takes somewhat of a back seat when using cheaper drives in a RAID-1 configuration – by simply by keeping an extra $30 drive or two on hand as spares, you’ll still come out ahead financially, with no little down time waiting on a new drive to arrive.

Have Your Cake and Eat It Too

But what about those times where you do need speed, capacity, and reliability? It’s sorta like that old muscle car adage: cheap, fast, reliable – pick any two. The same premise generally holds true for computer components, including hard drives. Simply put, if you want fast and cheap, it likely won’t be reliable. Reliable and cheap? It’s not gonna be fast. You want all three? Unfortunately, you’re going to have to pay for it.

Or are you?

Perhaps there’s a happy medium – as long as you understand what it is you’re looking for. You see, performance is relative. There are certainly applications that require an abundance of IOPS. Others require significant write endurance. Others yet are heavily read biased. For each of these use cases, there are drives that fit the specific profile. For us, we needed some reliable, reasonably fast drives that will be 80% read-biased, but not break the bank. We’ve think we’ve found the sweet spot with the Samsung PM853T.

The Samsung PM853T

The Samsung PM853T series drives were mass produced around 2014-2016, so all the drives floating around out there are data center pulls, some with low hours, and in some cases, even New Old-Stock (NOS). Still, these are a great deal and can be had for as low as $0.10 per GB. Keep in mind that many of these drives are OEM drives that were sold bundled with servers, and thus will carry no warranty from the drive manufacturer even if they had a recent manufacture date. At this price point, however, having a cold-spare on hand is certainly achievable, and is highly recommended.

Samsung considers these drives to be a mixed workload drive with high sustained performance, which is perfect for our purposes. Note that the PM853T is an TLC SATA III 6 Gb/s drive, so like other SATA SSDs, it’s limited to a theoretical 600 MB/s. In our case, this is mostly irrelevant, however, as we’ll be using these in RAID-1/0 arrays as the disk subsystem for Hyper-V clusters. Given a minimum of 4 disks in an array (and possibly many more), this configuration can easily saturate the 2000 MB/s maximum throughput of a single 4-lane SFF-808x connector on an older SAS2 HBA like the LSI-Avago SAS 9210-8i.

Attributes

Samsung offered the PM853T in 240 / 480 / 960 GB sizes, and the drive offers many features not found on Samsung’s consumer drives.

Samsung PM853T – Specifications
Form factor 2.5 inches
Capacity 240 / 480 / 960 GB
Host Interface SATA3 – 6 Gb/s
Encryption AES 256-bit Hardware Encryption
Mean time 2.0 million hours
Uncorrectable bit 1 in 10^17
Power consumption Active Read/Write : 2.7 Watt/3.8 Watt, Idle : 1.2 Watt
TBW – 240 GB : 150 TBW
– 480 GB : 300 TBW
– 960 GB : 600 TBW
Cache power protection Supported
Sequential R/W (MB/s) Up to 530 / 420 MB/s
Random R/W (IOPs) Up to 90,000 / 14,000
Physical dimensions 100mm x 70mm x 7mm
Weight 63g

Among the features, Samsung lists the following:

    Consistent high-quality performance. Delivers consistent performance under diverse workloads to meet various data center demands.
    Advanced Error-Correcting Code (ECC) engine. Corrects read failures to greatly improve the reliability of the data stored in the memory for higher error correction and endurance than the BCH code can deliver alone.
    End-to-end protection. Extends error detection to cover the entire path, from the host interface to the NAND flash memory in the SSD for superior data integrity.
    Power-loss protection. Ensures no data loss during unexpected power failures by using the power supply of tantalum capacitors to borrow enough time to store all cached data to flash memory.
    SMART technology. Anticipates failures and warns users of impending drive failure, enabling time to replace the ailing drive to avoid data loss and system failure malfunctions.
    Thermal throttling. Regulates the temperature of the hardware components automatically to protect them from overheating by managing its performance level to prevent data loss.

Performance

So how does it perform? Samsung provides an enormous amount of data in their product brief on the PM853T, but here are some highlights of tests conducted in Samsung’s data lab using a PM853T 480 GB drive against a competitor’s product. Samsung uses the following tools to generate this data: Fio 2.1.3, Jetstress, and IOMeter.

Sustained Performance Tests

In this test, Samsung pitted the PM853T against an competitor’s MLC SSD drive during an 11 hour workload. The results indicate that the Samsung drive shows much lower latency with less standard deviation (more consistency). Overall the Samsung drive also had overall higher average IOPS.

Read/Write Tests

Additionally, the Samsung drive outperformed it’s competitor in both sustained random, as well as sequential read/write tests, achieving nearly 160000 IOPS at 100% random read in RAID-5 configurations, and 30000 IOPS at 100% random write in RAID-1 configurations.

In the sequential read tests throughput reached approximately 1500 MB/s in RAID-1 and over 1200 MB/s write in RAID-5 and outperforms its competitor as much as 29%, depending on RAID configuration and queue depth.

In mixed workloads it’s a similar story – the PM853T performs outperforms its competitor at all queue depths, in both non-RAID and RAID configurations, achieving more than 60,000 IOPs in RAID-1 at a RW ratio of 75:25, which is similar to typical virtual environment workloads.

Latency

In terms of average and maximum latency, the PM853T again performs admirably against a competitor.

Application Workloads

Finally, in both virtual environments using multiple VMs, as well in as various real-world application workloads, the PM853T again outperforms its competitor across the board.

In our own much simpler tests, we used a Samsung PM853T 960 GB drive. This drive was a server pull that, as you can see, had very low hours.

We saw read/write performance very much in line with Samsung’s official claims and consistently saw over sequential reads over 550 MB/s read and sequential writes over 420 MB/s.

Limitations

All this said, these drives do have certain limitations that should be at least touched upon:

    Form Factor. These drives are 2.5″, so they may not fit in your existing NAS, at least not without an adapter. Though at 7 mm z-height these will easily fit in all 2.5″ drive locations.
    SATA III. The PM853T is SATA III, not SAS or PCI-E, so if you need the raw performance of PCI-E or the expanded feature set of SAS such as multiple initiators, full duplex speeds or multipath I/O, then these drives are not for you.
    Write Speed. Being a read-biased drive, one would expect write performance to take a bit of a hit. These drives certainly do not display write speeds as fast as modern PCI-E/NVMe based drives. That said, they’re no slouch either, especially in RAID arrays. And at $0.10 per GB, you can actually afford to build an array with them.
    Endurance. Again, being a read-centric TLC SSD, the PM853T is only rated at 0.3 drive writes per day (DWPD). SLC drives can typically handle as many as 10x the number of write cycles that MLC or TLC drives can. This translates to nearly 300 GB in drive writes daily for 5 years. Unless you have some atypical use case, these drives should last a very long time in a typical 80%/20% R/W virtualization scenario.

Conclusion

So how exactly are we using these drives at Teknophiles? We’re currently running nearly 30 virtual machines on a single 1.8TB RAID-1/0 volume (4 x 960GB Samsung PM853T) and these drives don’t break a sweat. Even when hammering the environment with Windows Updates, mass live migrations or boot storms, these drives hold up well. The PM853T’s random IO performance and low latency makes it quite suitable to meet the demands of the mixed workloads that virtual machines place on the disk subsystem. Additionally, with numerous 853T drives currently in play (4 x 960 GB and 2 x 480 GB), we’ve not had a single failure in more than 10k hours use – these seem to be quite reliable drives. Simply put, for a home Hyper-V or ESX lab, it’s hard to imagine a better drive for the money. Factor in the quite excellent IO and throughput per watt of power consumption these drives produce, and you have a clear winner with the PM853T.

Silicon Power Bolt B10 USB SSD Review

Silicon Power Bolt B10 USB SSD Review

It’s no secret that the advent of solid state drives (SSDs) has irrevocably changed the technology landscape. Quite simply, SSDs eliminated what has been the largest bottleneck in computing performance for quite some time – the spinning disk. With SSDs, performance metrics on workstations such as latency, throughput and input/output operations per second (IOPS) are nearly irrelevant, as other system components such as the SATA interface become the limiting factor.

There are other attributes of SSDs that aren’t often emphasized, however, such as size, weight and portability. This is likely owing in large part to the fact that drives typically conform to a standard 2.5″ or 3.5″ form factor to maintain backwards compatibility. However, crack open a typical 2.5″ SSD and it becomes pretty obvious that SSDs could be significantly smaller than the standard dictates. And though hard disk drives (HDDs) have also packed more and more data onto their 2.5″ and 3.5″ platters, it is stated that SSD storage density surpassed that of HDDs in 2016, and is expected to continue to out-pace advances in HDD recording technologies.

Portable Drives

When I travel, I always like to have some sort of portable storage with me. And, to be frank, portable is a term that’s thrown around pretty loosely these days. My mobile phone is “portable,” yet it barely fits in my front jeans pocket, and I certainly can’t climb into my buddy’s Tundra with it in there. This, it seems, has been the unfortunate trend in portable devices these days – as performance demand increases, so does the size. Often times, I simply grab a USB thumb drive or two when I’m on the road. But when it comes to thumb drives, even the best performing of the bunch leave a little to be desired. I could carry a 2.5″ external drive in my laptop bag, I suppose, but the added bulk becomes cumbersome, especially when competing for space with a mouse, extra batteries, an assortment of cables, and the laptop’s AC adapter. What I really want is something small, light, and fast. I want something easy to carry, but not limited with respect to capacity or performance – you know, like an SSD.

Silicon Power Bolt B10

Having been a longtime fan of Silicon Power’s wallet-friendly line of SSDs for our lab server OS drives, I was delighted when Silicon Power sent me a Bolt B10 portable SSD to review. This is the first portable SSD I’ve intimately used and, spoiler alert, I won’t be going back to thumb drives when I travel any time soon. Now let’s dig into the details of this little gem.

Form Factor

Conceptually, one of the things I like most about portable SSDs is that we’re finally capable of breaking existing form factor molds. Before SSDs, 2.5″ and 3.5″ hard drives defined the size and shape of portable mass storage. This meant relatively large, clunky, and generally unattractive boxes. Since internal SSDs only conform to these form factors to remain relevant in server, desktop, and laptop applications, design can take a front row with portable SSDs. Portable SSDs tend to possess sleeker lines, smaller packages, and generally more attractive aesthetics. They don’t even have to be rectangular – some manufacturers like Silicon Power even offer round flavors of portable SSDs.

The Bolt B10 conforms to a traditional rectangular shape, though by no means is this a bad thing. The drive is understated, yet attractive, and it’s credit card sized form fits comfortably in the palm of your hand. The drive is featherweight at 25g, almost too light, though not cheap feeling, and the smooth plastic just feels right. It’s the kind of combination that makes you want to fidget with it, like the satisfying click of a well-made ball point pen. You can see here that the drive has a smaller footprint than a Logitech M325 wireless mouse.

Inside the drive you’ll find the PCB that occupies about half of the actual drive enclosure volume, which is to say it’s quite small. Directing the show, you’ll find the Phison PS3111-S11 controller, which gets generally favorable reviews. We’ve had nothing but luck with Phison-controlled SSDs, so we’ve got no complaints here. You can also see the 4 x 32GB NAND chips as well as a micro-USB 3.1 Gen1 connector soldered to the PCB.

Power, Heat & Noise

One of the numerous benefits of small form-factor 2.5″ hard drives is that their enclosures can be driven solely from USB power. The Bolt B10 is no exception. It’s a USB 3.1 Gen 1 device, but is also 2.0 backwards-compatible so it’s power draw cannot exceed the USB 2.0 specification of 5 power units of 100mA, or 500mA total. At 5V this equates to a maximum power consumption 2.5 W, though I suspect the B10 draws about half of that, even when continuously reading or writing.

In fact one of the more interesting use cases (for me) of portable hard drives is slinging lossless music around when I’m on the go. Specifically, I like to be able to plug a drive into an after market stereo head-unit with front-panel USB. Unfortunately, the front-panel USB just doesn’t deliver enough power to spin up most standard 2.5″ USB drives. The B10 works flawlessly in this application, giving you up to 512 GB of easily transportable lossless music for your commute.

Additionally, solid state drives generate less heat and noise than their spinning counterparts, as one might expect. The SP Bolt B10 makes no discernible noise during operation and the tiny case feels cool to the touch even after long continuous writes.

Specifications & Features

Included in the box is the Bolt B10 and a Micro USB 3.0 cable as shown here.

Now let’s take a look at the manufacturer specifications for the B10:

Power supply DC 5V
Cable Micro-B (B10) to Type-A (PC/NB)
Capacity 128GB, 256GB, 512GB
Dimensions 80.0 x 49.5 x 9.4mm
Weight 25g
Material Plastic
Color Black
Interface USB 3.1 Gen1 / USB 3.0, USB 2.0 compatible
Performance Read(max.)400MB/s
Performance Write(max.)400MB/s
Supported OS Windows 10/8.1/8/7/Vista/XP, Mac OS 10.5.x or later, Linux 2.6.31 or later
Operating Temperature 0℃~ 70℃
Storage Temperature -40℃~ 85℃
Certification CE/FCC/BSMI/Green dot/WEEE/RoHS/EAC/KCC/RCM
Warranty 3 years

Performance and Features

Ultimately, performance is probably what people care about most in a portable SSD. The USB interface has a long history of offering underwhelming performance. USB 2.0 offered pretty measly transfer rates of 480 Mbps or 60 MB/s. Due to bus limitations, real-world speeds were closer to 35 MB/s, however. Even in 2000 when USB 2.0 was introduced, an average spinning drive could easily saturate the USB link. It wasn’t until the advent of USB 3.0, nearly 10 years later, that the USB interface was no longer the bottleneck. With transfer speeds of 5 Gbps (625 MB/s), USB 3.0 suddenly made spinning drives feel slow, and the thought of portable SSDs began to make a lot of sense.

In this case, the Bolt B10 tested was a 128 GB model and testing was performed on a modest Dell Laptop: a Latitude E6430, Core i7-3720QM CPU @ 2.60 GHz, 8 GB RAM, Silicon Power S60 120 GB SSD. Given that the Bolt B10 has theoretical maximum throughput of 400 MB/s, we should not be bottlenecked by the USB 3.0 interface.

With the queue depth set to 4, ATTO Benchmarks showed write speeds very near the claimed 400 MB/s, peaking at nearly 360 MB/s, while read speeds exceeded the listed specifications, reaching speeds of approximately 430 MB/s.

CrystalDiskMark’s numbers weren’t quite as glowing, but were still quite good overall.

Some real-world file copies yielded satisfactory results. Large file copies were generally characterized by peaking at over 280MB/s then leveling out to ~130-150MB/s for the duration of the copy.

Small file copies can be quite taxing for any storage media. The results here were also on par with other similar drives we’ve tested. Here you see the copy of the WinSXS Folder – 5.96 GB (6,405,198,876 bytes) containing 76,348 Files, 23,163 Folders.

Finally, Silicon Power lists the drive’s features as follows:

  • Ultra-compact and lightweight for great portability
  • Clean and smooth exterior design
  • Large storage capacity of up to 512GB
  • Superfast transfer rates of up to 400MB/s read & write speed*
    *The transmission speed will vary depending on system performance, such as hardware, software, file system, usage and product capacity. Speeds are tested by Silicon Power with FAT32 (for cross-platform sharing) or NTFS (for single file over 4GB) file formats using CDM or ATTO tests.
  • Supports LDPC error correction and Wear Leveling
  • Free download of SP Widget software for data backup & restore, AES 256-bit encryption, and cloud storage
  • One thing to note is that out of the box the Bolt B10 was formatted to FAT32, which is an interesting choice. As such, I could not initially copy files larger than 4 GB to the drive. Now to someone who’s been in IT for 20 years, this isn’t a big deal, and a quick reformat to NTFS resolved the issue. However, I can easily see how this might confuse someone a bit less technology savvy. Additionally, one of my pet peeves about many external hard drives are the hordes of autorun software that come pre-loaded. Most people simply want to drag and drop files to their USB drives, so this software is ordinarily just a nuisance. On a positive note, the SP Bolt B10 contains very little on the drive out of the box. In fact, the only files present on the drive were there to remind you to register your product with Silicon Power.

    Conclusion

    It should be no surprise that SSDs are now the logical choice when it comes to no-compromise portable storage. And though you’re certainly not going to tote around 4TB SSDs anytime soon (unless you have really deep pockets), affordable, portable SSDs are now large enough to meet most users’ needs. Silicon Power offers just such a drive in the Bolt B10. Are there faster portable SSDs out there? Sure, at least on paper. Considering that you’ll be tossing this in your bag and possibly leaving it on the table at the coffee shop, I’m not sure I can justify the extra cash for a few arbitrary MB/s. Additionally, it seems that many manufacturers rate their products in the lab, and under conditions that are hard to replicate in the real-world. It’s been my experience, however, that Silicon Power’s products usually meet or exceed claimed specifications. Frankly, realistic product specifications are a breath of fresh air, and make you feel like you’re getting your money’s worth, all while patronizing a company that clearly wants to earn your trust.

Silicon Power S60 60GB SSD Review

Silicon Power S60 60GB SSD Review

As we’ve mentioned in a previous article, choosing the correct hard drive for each application is critical to the performance and longevity of the drive. Different types of drives may be well-suited for some applications, but much less so for others.

Server OS Drives

One area that’s becoming somewhat challenging is finding drives to serve as operating system drives in our lab servers. On the surface, the requirements for such a drive do not seem too difficult to fulfill – we need drives that work well in a RAID1 array, display good read characteristics, are durable, and are inexpensive. Incidentally, modern consumer drives fit this bill quite well – with one caveat. You see, finding good consumer SSDs is an easy task. There are excellent options from Samsung, Crucial/Micron, Western Digital, SanDisk, Silicon Power, Toshiba/OCZ and many others. In fact, if we were looking for a 500GB SSD, the hardest part might be choosing between what seems to be an endless number of similarly performing drives.

If we were looking for a 500GB SSD, that is. In selecting a server OS drive, a 500GB drive would mostly be wasted space. A Windows Server OS might use 20GB – 30GB, unless you run a large database locally. Domain Controllers typically stay under the 15GB mark. Linux servers are considerably smaller, yet – a storage server with a few applications might consume 10GB – 15GB of disk space including swap. And it would be pretty egregious if a mail server used beyond 6GB -7GB. Obviously, this is where virtualization and shared resources becomes so advantageous. And while we firmly believe virtualization is a key component of any good home or work IT lab (which we’ll discuss in great detail later), you may not either be at the point where you need to virtualize or may not have the resources to do so. Furthermore, even if you virtualize, there are still several use cases where physical boxes are desirable or even necessary. And physical boxes need OS drives.



The Silicon Power S60

While in the hunt for a small, inexpensive, consumer SSDs, we’ve run across a few models that have worked well. Initially, we employed several of the Mushkin ECO2 60GB SSDs, as they were inexpensive, sized right, and, though they never got dreamy reviews, seemed pretty solid. In the end, however, these drives have appeared to be phased out by the manufacturer, and we have admittedly had about a 20% failure rate over a few years. So, in an effort to find a suitable replacement to the now defunct Mushkin ECO2s, we stumbled upon the Silicon Power line of SSDs. Like many SSD manufacturers, Silicon Power offers a number of SSD model ranges, and it can be sometimes hard to discern significant differences among the models. From entry-level consumer “laptop upgrade” S55 and S60 models, to “prosumer” gaming models like the S85 with a five-year warranty, as well as the TLC 3D NAND-based A55 model, Silicon Power has an offering for most applications. This ultimately led us to the Silicon Power S60. The S60 is a “consumer plus grade” SSD, which means it’s designed to fit the inexpensive laptop upgrade niche. And while it’s quite suitable for such duties, we like the fact that it’s available in a 60GB model – perfect for operating system drives. Best yet, it can be regularly found for under $35 per drive, making it a relative bargain given it’s small capacity. Consumer reviews of the S60 drive are solid as well, with nearly 200 reviews averaging 4.3 stars on Amazon at the time of this post. Since, we run a double-digit number of these drives, I always keep a couple cold spares on hand, but it’s still nice to know I can have a replacement at my door in two days if necessary (shameless Amazon Prime plug).

From the Silicon Power site, the S60’s specifications are listed as follows:

Capacity 32GB, 60GB, 120GB, 240GB, 480GB
Dimensions 100.0 X 69.9 X 7.0mm
Weight 63g (max.)
Interface SATA III
Performance Read(max.) ATTO:
480GB: 560MB/s
240GB: 550MB/s
120GB: 520MB/s
CDM:
480GB: 520MB/s
240GB: 500MB/s
120GB: 420MB/s
Performance Write(max.) ATTO:
480GB, 240GB: 500MB/s
120GB: 490MB/s
CDM:
480GB: 460MB/s
240GB: 300MB/s
120GB: 170MB/s
MTBF 1,500,000 hours
Operation Voltage 5V
Vibration Resistance Test 20G
Shock Resistance Test 1500G Max
Warranty 3 years
Note Performance result may vary, depending on system platform, software, interface and capacity.

Performance and Features

Though Silicon Power doesn’t list the performance specifications of the 60GB model, we tested the drive performance with both the manufacturer’s software, SP Toolbox, as well as ATTO Disk Benchmark and Crystal Disk Mark. These tests were performed in Windows Server 2012 R2 on a Supermicro A1SRI-2558F’s SoC SATA3 (6Gbps) ports.

As you can see, we found that this drive performs quite well for a smaller drive, and our read performance numbers in CDM actually exceeds the manufacturers marks for a 120GB drive by ten percent at 472MB/s. ATTO read numbers fell in line with what we’d expect – just shy of the numbers cited for the 120GB model at around 475MB/s.  Likewise, the write performance numbers for ATTO fell inline with expectations, though somewhat lower than 120GB model at around 265MB/s, while we exceed the listed speeds for the 120GB model in CDM by over 50% at 262MB/s!

Additionally, one might notice that the SSD controller is conspicuously absent from the drive specifications. There has previously been some concern that drive manufacturers may use multiple controllers in budget drives such as the S60. It would seem that this is indeed the case with the S60, which has been known to contain a SandForce or Phison controller. It doesn’t seem that Silicon Power is trying to hide this fact, however, as some manufacturers have been accused of, nor do they claim that it is one controller vs. the other. In fact, one can easily see that they reference both controllers in the SP SSD Firmware Update User Manual, indicating that your SSD may contain one or the other. To be truthful, we’ve had success with both controllers, though we ran the Firmware Update just to satisfy our curiosity. Unfortunately, we were not able to get the SSD Firmware Update to recognize the S60 in multiple systems, and were therefore unable to confirm whether the drive we tested contained the SandForce or Phison controller. Again, the drive performs as expected in both RAID and single-drive configurations, so this is not a major concern to us.

Finally, Silicon Power lists the drive’s features as follows:

  • Adopts MLC NAND flash and “SLC Cache Technology” to improve overall performance
  • 15 x faster than a standard 5400 HDD*
    *Based on “out-of-box performance” using a SATA Revision 3.0 motherboard. Performance result may vary, depending on system platform, software, interface, and capacity.
  • 7mm slim design suitable for ultrabooks and ultra-slim laptops
  • Supports TRIM command and garbage collection technology
  • NCQ and RAID ready
  • ECC (error correction code) technology to guarantee reliable data transmission
  • S.M.A.R.T. monitoring system
  • Low power consumption, shock and vibration-proof, noiseless and low latency
  • Free SP ToolBox software download for disk information such as self-monitoring analysis report, extent of consumption, and SSD diagnostics

It is heartening to note that RAID is specifically listed as a feature. It’s worth noting that all of our S60s are in RAID1 arrays, so while we cannot comment on stability or peformance of the S60 in parity arrays, we have successfully tested them with numerous disk controllers such as the HP P410i, LSI/Avago SAS 92xx HBAs in IT/IR modes, Adaptec SATA HostRaid, and software RAID via numerous onboard SATA controllers. All seem to work flawlessly with the S60, though controllers like the HP P410 will not report SSD Wear Status, which is not unexpected from a consumer drive without HP firmware. In a few cases, we even replaced failed Mushkin ECO2 60GB drives with an SP S60, and now have mixed RAID1 arrays with one 60GB Mushkin and one 60GB S60. Though the S60 reports slightly larger capacity than the Mushkin, rebuilds proceeded quickly and without issue.

Conclusion

All in all, we’re quite pleased with the the Silicon Power S60. And though we’re probably not using it in a capacity that Silicon Power ever intended, it seems to fill this niche nicely. Heck, we’ve even used a few of the larger S60 models for their intended purpose: to breathe new life into old laptops to throw around in the garage as dataloggers (we’re occasional drag racers) or machines for the kids to beat on. Regardless of the application, the S60 has thus far dutifully served it’s purpose. And though it may not be as fast as the latest generation of drives out there, it’s not hard to make the case that the S60 is one a heck of a value.

Choosing the Right Hard Drive for Your Lab

Choosing the Right Hard Drive for Your Lab

At Teknophiles, we run a fairly large number of hard drives in our lab servers. These drives fulfill several different duties, but typically fall into three primary categories. Over the years, we’ve tried a bunch of combinations, been through several iterations, and found some setups that worked well and others that didn’t. We’ll walk through our criteria for each type of drive, and hopefully help you choose the right drive for the application at hand.

Performance Drives

First, let’s talk about performance drives. We typically use 2.5″ enterprise SATA solid state drives, designed for high IOPS and long service lives. Similar in performance to high-end consumer drives, these typically have additional  features such as power-loss protection, higher write endurance, a greater number of spare blocks, and better error correction. These drives are great for arrays housing virtual machines, databases, or other high workload operations. What you get in performance, however, is offset by a much higher price per GB compared to other types of drives. You’re likely not going to put your media collection on these drives, unless of course you’ve got really deep pockets! For these drives, look for used, low-hour enterprise SSDs. These can typically be found with much of their useful service life left after retirement from a data center.

Storage Drives

The 4TB Seagate STDR4000100 is an excellent candidate for shucking

Second, we have storage drives. These drives comprise the SATA arrays that contain mostly static data, and typically fall into the write once/read many (WORM) category of service. With these drives, we’re not so much concerned with raw performance, nor ultra-high reliability. In a lab environment, we’re looking for three primary attributes with our storage drives: 1) low price per GB, 2) storage density (TB per rack unit) and 3) low watts per TB. Since it takes a significant number of drives to assemble a 30, 50, or 100 TB array, meeting these criteria keeps the overall costs of drives down, takes up less space in the rack and requires lower energy costs to operate. Individually, these drives may be quite slow – even 5400 RPM spindles will suffice, but in the proper configuration can still saturate 1Gbps or even 10Gbps links. And since we’ll be employing a number of these drives in a single array, we’ll be assuming a, “strength in numbers” approach, both from a performance and reliability standpoint. A popular, low-cost strategy for sourcing 2.5″ or 3.5″ HDDs is shucking external USB drives from several different vendors. A bit of research will reveal which drives are housed in each external drive model. But be careful! Not all external USB drives use a standard SATA connector internally, and you’re also sacrificing your warranty by doing this. It’s best to thoroughly check the drive for errors before disassembling the USB enclosure, and make a warranty claim if necessary. However, because you can save tens of dollars per drive by adopting this strategy, you can save enough to essentially “self-warranty” the drives by using the savings to keep a spare drive around, with the added benefit of limiting downtime in the event of a failure.

Archive & Backup Drives

A third category of drive is the archive or backup drive. These drives are typically not configured into RAID arrays, though they can be if one so chooses. In our lab environment, we choose to use individual backup disks grouped into a large storage pool. This gives us the benefit of a single, large backup target, but without the added cost and complexity of RAID groups. We have redundancy in our primary storage arrays, so if a single backup disk fails, the next backup job will simply copy that data back to the pool. Like storage drives, the backup drives are large, inexpensive, relatively slow disks. We typically use 4TB-6TB or larger 3.5″ disks for this purpose. Again like storage drives, many people choose to shuck drives like the WD My Book external drives and adopt a self-warranty strategy.



OS Drives

The final category we’d like to mention is server OS drives. Why do we consider OS drives to fall into their own category? Simple – efficient use of disk space. With many drives, whether SSD or spindle HDDs, you’ll likely find that after installing your OS to a RAID1 array, you have much more space than you’ll ever need. Unless you’re purposing servers for multiple duties, you’ll find that most Windows Server OSes use less than 20 GB of disk space, and even applications like WSUS which employ the Windows Internal Database (WID) will use less than 40 GB of space for the C: drive. Thus, it makes little sense to use drives that are terabytes, or even only a few hundred gigabytes, since the majority of that space will just be wasted. And though not paramount, some reasonable amount of performance is desirable for these drives, as it speeds reboot times and increases overall responsiveness of the server. To that end, small, consumer SSDs fit the bill perfectly for these drives. They’re inexpensive (sometimes, under $40 each), reasonably fast, mostly reliable, and we don’t have to worry much about write cycles, since a typical OS workload is primarily read (75-80% in our tests in Enterprise environments). While there aren’t a huge number of drives that fit these criteria, there are still a reasonable number of 50-60 GB drives available and plenty of affordable 120 GB options out there as well.

One note if you choose to use a small SSD for your OS drives.  In most cases it won’t be an issue, but do exercise caution if you use a relatively small drive for a hypervisor with a significant amount of RAM.  Since a Windows managed paged file can grow quite large (as much as 3x RAM!), you can see how the page file could easily fill a 60 GB drive. Consider a system with as 64 GB of RAM.  When performing a complete system crash dump, a full 1x RAM is required to write out the dump to either the page file or dedicated dump file.  This would quickly overwhelm the drive, even though a page file likely wouldn’t be needed at all during normal operation, assuming the system’s memory was well managed.  Given this potential issue, some Admins choose to manually set the page file to a specific value to prevent the drive from filling.  This comes with the tradeoff of not being able to perform the full system dump, however.  Check here for more information on Microsoft’s recommendations for calculating page file sizes.

TIP

If you have multiple servers, try to stick with the same drive, or at least a drive of the same capacity. This way, you can stockpile one extra drive to serve as a cold spare for all of your servers.

Other Drives

You might have noticed that we neglected to mention Enterprise SAS and ultra high-end SSDs. These drives certainly have value in specific applications, but a home lab environment is probably not the best use case. SAS drives can be expensive, power-hungry, require SAS controllers, and are finicky about mixed-use with SATA drives. And while you might have one in your high-end gaming rig, it’s not likely you’re going to fill your home lab with a dozen or more PCIe or NVMe drives, due to cost alone. We find it’s best to keep things relatively simple when it comes to your home lab, and we hope these tips will help you select a storage strategy that will serve you well into the future.